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ABSTRACT

The generalised gamma distribution (GGD) is one of the most widely used statistical 
distributions used extensively in several scientific and engineering application areas due 
to its high adaptability with the normal and exponential, lognormal distributions, among 
others. However, the estimation of the unknown parameters of the model is a challenging 
task. Many algorithms were developed for parameter estimation, but none can find the best 
solution. In this study, a simulated annealing (SA) algorithm is proposed for the assessment 
of effectiveness in determining the parameters for the GDD using modified internal rate 
of return (MIRR) data extracted from the financial report of the publicly traded Malaysian 
property companies for long term investment periods (2010–2019). The performance of the 
SA is compared to the moment method (MM) based on mean absolute error (MAE) and 
root mean squares errors (RMSE) based on the MIRR data set. The performance of this 
study reveals that the SA algorithm has a better estimate with the increases in sample size 
(long-term investment periods) compared to MM, which reveals a better estimate with a 
small sample size (short-time investment periods). The results show that the SA algorithm 
approach provides better estimates for GGD parameters based on the MIRR data set for 
the long-term investment period. 

Keywords: Generalised gamma distribution, modified 
internal rate of return, moment methods, simulated 
annealing algorithm

INTRODUCTION

Recently, one of the major concerns in the 
investment decision is stock assessment and 
forecasting. An investment decision is one of 
the vital activities in business performance. 
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Both shareholders and investors can use stock valuation models to evaluate their shares 
and make stock trading decisions accordingly. Major shareholders carried out investment 
valuations to drive them to make decisions using various models. Managers must have 
a correct grasp of the influential resources to construct an investment model for stock 
valuation, which is a vital aspect of a company’s performance in stock valuation. 

Investment modelling is all about building and analysing mathematical models to 
depict the processes by which money flows into and out of a company. It takes various 
quantitative techniques to “make financial sense of the future.”  Investors may use a variety 
of models when selecting stocks and evaluating the performance of their stock portfolios. 
Stock valuation is a strategy used in determining the worth of a firm, which may provide 
information to potential investors about the company’s profitability constraints (Besley 
& Brigham, 2015). 

Stock valuations are widely conducted based on traditional accounting methods. It 
includes the Net Present Value (NPV) and the Internal Rate of Return (IRR), and the 
Profitability Index (PI) (Bonazzi & Iotti, 2016). The implementation of IRR calculation, in 
which a single investment project came with multiple values, is one of the major flaws of 
traditional accounting methods (Kierulff, 2008; Osborne, 2010; Sabri & Sarsour, 2019). This 
problem is overcome by the application of the MIRR, which was rediscovered in the 1950s 
after its development during the 18th century, and which accounts for the periodic free cash 
flows by assuming reinvestment of cash inflows at the reinvestment rate (Baldwin, 1959; 
Biondi, 2006; Kierulff, 2008; Sabri & Sarsour, 2019). 

The MIRR is defined as the rate at which the NPV equals zero, that is, where the 
Present Value (PV) of the investment fund’s terminal value (future value of cash inflows 
assumed to be reinvested at the firm’s required rate of return) equals the present value of 
the investment outlays (cash outflows over the investment period) when discounted at the 
firm’s required rate of return (Besley & Brigham, 2015; Quiry et al., 2005). The investment 
rate of return might be accomplished using an iterative procedure to locate the root, such as 
the Newton-Raphson algorithm (Ahmad, 2015) or the modified Newton-Raphson method 
(Pascual et al., 2018). 

However, some problems arise when utilising this procedure since it does not account 
for all relevant aspects that affect the investment return, rendering their methods ineffective 
for measuring stock performance (Brealey et al., 2006; Markowitz, 1952; Ross et al., 2010). 
As a result, several researchers have devised alternate investment appraisal methodologies 
to address this issue (Sabri & Sarsour, 2019; Satyasai, 2009; Sayed & Sabri, 2022). Sabri 
and Sarsour (2019) formulate an effective approach for determining the rate of return from 
long-term investments considering a variety of financial parameters, including stock price, 
reinvested dividends, and share issuances such as splits and bonuses issues. Investment 
returns were more realistically shown in the stock investment model since it revealed the 
calculation of the MIRR using a yearly annuity-style approach to contributions.



2243Pertanika J. Sci. & Technol. 31 (5): 2241 - 2255 (2023)

On Estimating the Parameters of the Generalised Gamma Distribution

Sayed and Sabri (2022) extend the process of calculating the MIRR by incorporating 
treasury share dividends, which may significantly affect the investment’s rate of return. 
Moreover, the study suggests transforming the MIRR by adding the value of one to prevent 
any negative return since the return estimated on any investment appears to be more 
than minus one. Being a random variable, the rate of return will follow some statistical 
distribution. The normal distribution in finance is often used to model asset returns. For 
example, Sharpe (1964) assumed that the return follows a normal distribution while 
describing the theory of market equilibrium and Capital Asset Pricing Models. However, 
returns on financial assets do not exhibit the normal distribution (Cont, 2001). As a result, 
other distributions should be employed (Fama, 1963). 

The gamma distribution is extensively employed in several scientific and technical 
disciplines, such as banking, networking, and meteorological research (Kellison, 2009; 
Kim et al., 2003) due to its high degree of adaptability with the normal and exponential 
distributions, among others (Eric et al., 2021). This distribution is used to represent positive 
continuous variables. It logically models the waiting durations between events, like Sabri 
and Sarsours (2019), who modelled a framework with positive and continuous variables. 
A unique and flexible form of the gamma distribution is the GGD which includes special 
cases of some distributions such as the Weibull distribution, the gamma distribution, the 
exponential distribution, and the lognormal distribution (Kiche et al., 2019; Khodabina & 
Ahmadabadi, 2010; Stacy & Mihram, 1965).

Various approaches, such as the method of moment and maximum-likelihood function, 
exist to estimate the three parameters of the GGD, namely, shape, scale, and growth rate 
(Naji & Rasheed, 2019). Estimating the GGD parameters based on the numerical methods 
is problematic due to the difficulty in deriving their values from the mean and variance 
equations unless the value of one parameter is fixed and the values of the other two are 
calculated. Also, utilising the maximum-likelihood function to estimate the three parameters 
simultaneously is a mathematically complex procedure since it is difficult to derive a simple 
differentiation of the log-likelihood function concerning the shape parameter (Gomes et al., 
2008; Lakshmi & Vaidyanathan, 2016; Özsoy et al., 2020). Hence, the SA algorithm, which 
uses the log-likelihood function as an objective function and seeks to maximise it, may be 
incorporated as an alternative parameter estimation method (Idris & Muhammad, 2022).

The SA algorithm attempts to produce novel solutions to a particular problem based on 
a random process and a series of probability distributions. This random procedure does not 
necessarily improve the objective function but may still be accepted (Franzin & Stützle, 
2019). The algorithm was first employed in metallurgy as an optimisation procedure to 
attain minimal energy by progressively lowering atomic mobility, decreasing lattice defects’ 
uniformity, and reducing metal temperature (Du & Swamy, 2016). It is unaffected by any 
restraint at any local minimum and accepts any changes in the objective function with 
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indulgence, making it useful in many fields, including finance, mathematics and statistics 
(Abubakar & Sabri, 2021a, 2021b; Crama & Schyns, 2003; Orús et al., 2019).

The method of moments (MM) is a technique for estimating the parameters of a 
statistical model. It works by finding values of the parameters that result in a match 
between the sample moments and the population moments (as implied by the model). The 
MM is used as quick information about the unknown parameter or an initial guess for a 
numerical search for MLE estimates (Malá et al., 2022). Various researchers conducted 
the estimates of various statistical distributions based on MM. It includes the work of 
Hosking et al. (1985), who used the method of probability-weighted moments to derive 
estimators of the parameters and quantiles of the generalised extreme-value distribution. 
Greenstein et al. (1999) used MM to estimate the Ricean K-factor from measured power 
versus time, which is relatively cumbersome and time-consuming. Chang (2011) used MM 
compared with other numerical methods in estimating Weibull parameters for wind energy 
applications based on Monte Carlo simulation and analysis of actual wind speed. Bílková 
(2012) compare MM with L-moments based on lognormal distribution. Rocha et al. (2012) 
analysed and compared 7 (seven) numerical methods to assess effectiveness in determining 
the parameters for the Weibull distribution using wind speed data. Munkhammar et al. 
(2017) proposed a procedure based on the is based on MM, which is set up algorithmically 
to aid applicability in estimating Nth-degree polynomial approximations to be unknown 
(or known) probability density functions (PDFs) based on N statistical moments from each 
distribution. Tizgui et al. (2017) compare moment methods with other estimation methods 
for Weibull parameters in the Agadir region in Morocco. Chaurasiya et al. (2018) examine 
the effectiveness of nine different numerical methods in calculating the parameters of 
Weibull distribution for wind power density. Honore et al. (2020) introduce measures on 
how each moment contributes to the precision of parameter estimates in generalised MM 
settings. 

This study aims to demonstrate the SA algorithm’s efficacy in estimating the parameters 
of the GGD modelled on the transformed MIRR as formulated in Sayed and Sabri (2022) 
compared with the MM. The data relates to long-term investments in the stocks of 62 
publicly listed Malaysian property companies from 2010 to 2019, considering varying 
cases of one to eight-year investment periods.

MATERIALS AND METHODS

Modified Internal Rate of Return 

The MIRR model in this paper was introduced by Sabri and Sarsour (2019) and developed 
by Abubakar and Sabri (2021a) and Sayed and Sabri (2022). The MIRR model framework 
is a good fit for a long-term investment. Therefore, it requires a comprehensive search to 
collect more in-depth financial information about the companies under study, such as the 
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yearly updated dividend rate, stock issuance and daily updated stock price. It is crucial 
to focus on the form of the dividend declared for the shareholders because that tends to 
differ from one company to another, thus affecting the accumulation of their share unit g. 

In the investment theory, some companies are found practising the share split. For 
example, suppose each ordinary share is split into 2 (i. eg = 2). In that case, the number 
of the share units earned by the shareholder will be multiplied by two, thereby reducing 
the stock price to half to enhance the liquidity of the share capital traded in the market 
without any change in the investor’s capital. On the contrary, the bonus issue in which the 
company distributes the accumulated shares to the shareholders depends on the number of 
their shares. For instance, in a bonus issue of one share for two existing ordinary shares, 
the company distributes half of the accumulative share units to 1.5 share units at the end 

of the year. With such a bonus issue, the shareholder will earn 2 × (1 +
1
2

× 1) = 3  that 

makes g = 3. 
Furthermore, companies issue treasury shares or mandatory treasury shares in which 

the company distributes dividends for shareholders in cash, which does not affect the 
accumulation of the share unit g. If the company does not announce any share issuance for 
any year, then g = 1. The accumulation of share units g for a particular year is calculated 
by adding any share split or bonus issue in the same year and any treasury shares activity.

The long-term investment strategy associated with the MIRR model requires holding 
the cash out at the same level as at the beginning of every year for k years and reinvesting 
the cash dividend to increase the share units. After the desired investment’s time ends, the 
investor earns the capital with the profit of the investment after k years. If the investor gets 
less cash than the total contribution, then the MIRR may come negative. The process of 
calculating the MIRR is represented in a few steps as follows:

1. Set the investment time K. 
2. Calculate the respective terminal investment F(K) (Equation 1), which is the 

terminal value of the invested fund at the end of year K,

𝐹𝐹(𝐾𝐾) = 𝑆𝑆𝐾𝐾
(2)𝑃𝑃𝑢𝑢𝐾𝐾+1,2 + 𝐵𝐵𝐾𝐾 + 𝐷𝐷𝐷𝐷𝑉𝑉𝐾𝐾  

𝑁𝑁𝑃𝑃𝑉𝑉 = [𝑆𝑆𝐾𝐾
(2)𝑃𝑃𝑢𝑢𝐾𝐾+1,2 + 𝐵𝐵𝐾𝐾 + 𝐷𝐷𝐷𝐷𝑉𝑉𝐾𝐾](1 + 𝑟𝑟)−

𝑢𝑢𝐾𝐾+1,1−𝑢𝑢1,1
365 − 𝐶𝐶� 𝑎𝑎𝑘𝑘(1 + 𝑟𝑟)

𝐾𝐾+1

𝑘𝑘=1

−
𝑢𝑢𝑘𝑘 ,1−𝑢𝑢1,1

365

 

       (1)

where uK,1 is the date of share purchased and sold; uK,2 is the date of dividend and share 
issued based on the stock reported for year k; 𝑃𝑃𝑢𝑢𝑘𝑘 ,2   is the stock price at the date uK,2; BK 
is the cash balance of year k; DIVK is the cash dividend at year k, and r is the MIRR and 
C is the yearly fixed contribution used in Equation 2. Assuming the NPV at time zero is 
equal to zero, computed for MIRR as follows,𝐹𝐹(𝐾𝐾) = 𝑆𝑆𝐾𝐾

(2)𝑃𝑃𝑢𝑢𝐾𝐾+1,2 + 𝐵𝐵𝐾𝐾 + 𝐷𝐷𝐷𝐷𝑉𝑉𝐾𝐾  

𝑁𝑁𝑃𝑃𝑉𝑉 = [𝑆𝑆𝐾𝐾
(2)𝑃𝑃𝑢𝑢𝐾𝐾+1,2 + 𝐵𝐵𝐾𝐾 + 𝐷𝐷𝐷𝐷𝑉𝑉𝐾𝐾](1 + 𝑟𝑟)−

𝑢𝑢𝐾𝐾+1,1−𝑢𝑢1,1
365 − 𝐶𝐶� 𝑎𝑎𝑘𝑘(1 + 𝑟𝑟)

𝐾𝐾+1

𝑘𝑘=1

−
𝑢𝑢𝑘𝑘 ,1−𝑢𝑢1,1

365

  (2)
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For the year k  =  1, . . . ,K ,  𝑆𝑆𝐾𝐾
(2) 

𝑆𝑆𝐾𝐾
(2) = 𝑔𝑔𝑘𝑘 × 𝑠𝑠𝑘𝑘

(1) 

𝑠𝑠𝑘𝑘
(1) 

 is the accumulated share unit after share issuance at 
the end of year k, defined as Equation 3,

𝑆𝑆𝐾𝐾
(2) 

𝑆𝑆𝐾𝐾
(2) = 𝑔𝑔𝑘𝑘 × 𝑠𝑠𝑘𝑘

(1) 

𝑠𝑠𝑘𝑘
(1) 

        (3)

where gk is the function of share issuance, and 
𝑆𝑆𝐾𝐾

(2) 

𝑆𝑆𝐾𝐾
(2) = 𝑔𝑔𝑘𝑘 × 𝑠𝑠𝑘𝑘

(1) 

𝑠𝑠𝑘𝑘
(1) 

 is the share units at the beginning of 
year k. 

In a long-term investment based on the MIRR model, choosing the promising stock 
or the right time for investing is ineffective since the MIRR differs when holding a stock 
for an extended investment period. Also, tracking the best investment timing is difficult, 
as the MIRR measure can only be spotted annually. Therefore, this study assumes that the 
MIRR for all stocks and the time for starting an investment are common. For computation 
purposes, we define the MIRR by R tiK, where i  =  1, , ,n  stocks, t  =  t 1, . . . ,t T years of 
investment start, and K is the investment period so that K ≤ T .

The investors either expect a positive return (profit) from an investment or, in the 
worst case, they can get zero return which leads to work with a non-negative MIRR. The 
non-negative transformed rate of return was introduced by Sabri and Sarsour (2019) as 
Equation 4:

𝑋𝑋𝑡𝑡𝑡𝑡𝐾𝐾 = 1 + 𝑅𝑅𝑡𝑡𝑡𝑡𝐾𝐾          (4)

where K is the investment period, R tiK >  1 is defined as the MIRR, i  =  1, , ,nstocks, t 
=  t 1, . . . ,t T years of investment start, and K is the investment period. The non-negative 
transformed MIRR XtiK, being a random variable, should be distributed with a non-negative 
distribution such as the GGD, which will be explained in the next section.

Generalised Gamma Distribution 

The non-negative MIRR or the random variable XtiK for the i-th stock at investment 
year t over the investment period of K years may be distributed by the three 
parameters of the GGD, namely α and θ with the growth rate parameter γ. By letting 
𝑋𝑋𝑡𝑡𝑡𝑡𝐾𝐾 = (1 + 𝛾𝛾)𝐾𝐾−1𝑋𝑋𝑡𝑡𝑡𝑡1 , the probability density function (PDF) of the distribution is 
presented as Equation 5

𝑓𝑓𝑋𝑋𝑡𝑡𝑡𝑡𝐾𝐾 (𝑥𝑥;𝛼𝛼, (1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃) = �
1

Γ(𝛼𝛼) �
1

(1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃�
𝛼𝛼
𝑥𝑥𝛼𝛼−1𝑒𝑒

− 𝑥𝑥
(1+𝛾𝛾)𝐾𝐾−1𝜃𝜃 ,𝑥𝑥 > 0

0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡𝑠𝑠𝑒𝑒.
 

𝜇𝜇 = 𝛼𝛼(1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃 
𝜎𝜎2 = 𝛼𝛼[(1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃]2 

𝐿𝐿(𝛼𝛼𝐾𝐾 , (1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃𝐾𝐾|𝑥𝑥𝑡𝑡𝑡𝑡𝐾𝐾 ) = − 𝑙𝑙𝑙𝑙[Γ(𝛼𝛼𝐾𝐾)] − 𝛼𝛼𝐾𝐾 𝑙𝑙𝑙𝑙( (1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃𝐾𝐾) + 𝑙𝑙𝑙𝑙( 𝑥𝑥𝐾𝐾
𝛼𝛼𝐾𝐾−1)− 𝑥𝑥𝐾𝐾

(1+𝛾𝛾)𝐾𝐾−1𝜃𝜃𝐾𝐾
 (1) 

 (5)

with the mean and the variance presented in Equations 6 and 7, respectively, as follows,𝑓𝑓𝑋𝑋𝑡𝑡𝑡𝑡𝐾𝐾 (𝑥𝑥;𝛼𝛼, (1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃) = �
1

Γ(𝛼𝛼) �
1

(1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃�
𝛼𝛼
𝑥𝑥𝛼𝛼−1𝑒𝑒

− 𝑥𝑥
(1+𝛾𝛾)𝐾𝐾−1𝜃𝜃 ,𝑥𝑥 > 0

0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡𝑠𝑠𝑒𝑒.
 

𝜇𝜇 = 𝛼𝛼(1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃 
𝜎𝜎2 = 𝛼𝛼[(1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃]2 

𝐿𝐿(𝛼𝛼𝐾𝐾 , (1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃𝐾𝐾|𝑥𝑥𝑡𝑡𝑡𝑡𝐾𝐾 ) = − 𝑙𝑙𝑙𝑙[Γ(𝛼𝛼𝐾𝐾)] − 𝛼𝛼𝐾𝐾 𝑙𝑙𝑙𝑙( (1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃𝐾𝐾) + 𝑙𝑙𝑙𝑙( 𝑥𝑥𝐾𝐾
𝛼𝛼𝐾𝐾−1)− 𝑥𝑥𝐾𝐾

(1+𝛾𝛾)𝐾𝐾−1𝜃𝜃𝐾𝐾
 (1) 

        (6)
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𝑓𝑓𝑋𝑋𝑡𝑡𝑡𝑡𝐾𝐾 (𝑥𝑥;𝛼𝛼, (1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃) = �
1

Γ(𝛼𝛼) �
1

(1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃�
𝛼𝛼
𝑥𝑥𝛼𝛼−1𝑒𝑒

− 𝑥𝑥
(1+𝛾𝛾)𝐾𝐾−1𝜃𝜃 ,𝑥𝑥 > 0

0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡𝑠𝑠𝑒𝑒.
 

𝜇𝜇 = 𝛼𝛼(1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃 
𝜎𝜎2 = 𝛼𝛼[(1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃]2 

𝐿𝐿(𝛼𝛼𝐾𝐾 , (1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃𝐾𝐾|𝑥𝑥𝑡𝑡𝑡𝑡𝐾𝐾 ) = − 𝑙𝑙𝑙𝑙[Γ(𝛼𝛼𝐾𝐾)] − 𝛼𝛼𝐾𝐾 𝑙𝑙𝑙𝑙( (1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃𝐾𝐾) + 𝑙𝑙𝑙𝑙( 𝑥𝑥𝐾𝐾
𝛼𝛼𝐾𝐾−1)− 𝑥𝑥𝐾𝐾

(1+𝛾𝛾)𝐾𝐾−1𝜃𝜃𝐾𝐾
 (1) 

       (7)

The likelihood function of Equation 5 is defined as Equation 8, 

       𝐿𝐿(𝛼𝛼𝐾𝐾 , (1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃𝐾𝐾|𝑥𝑥𝑡𝑡𝑡𝑡𝐾𝐾 ) = −𝑙𝑙𝑙𝑙[𝛤𝛤(𝛼𝛼𝐾𝐾)] − 𝛼𝛼𝐾𝐾 𝑙𝑙𝑙𝑙( (1 + 𝛾𝛾)𝐾𝐾−1𝜃𝜃𝐾𝐾) + 𝑙𝑙𝑙𝑙( 𝑥𝑥𝐾𝐾
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Method of Moment (MM)

The MM is one of the existing methods used in estimating the parameters of the statistical 
distribution function. However, estimating the three parameters of Equation 5 using the MM 
is not ideal because of the difficulty of constructing the values of the three parameters from 
the mean and variance equations unless one of the values is fixed and solved for the other 
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the shape parameter α and the scale parameter θ using the MM. The fixed value of the 
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σs can be defined as Equations 10 and 11:
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Simulated Annealing Algorithm (SA)

The Simulated Annealing (SA) algorithm is a heuristic technique proposed separately by 
Kirkpatrick et al. (1983) and Cerny (1985). It is one of the most popular metaheuristics 
algorithms that rely on logic and rules to optimise model parameters. This process is based 
on Physical Annealing, which mimics the physical melting process of heating a material 
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to its melting point and then slowly cooling it to achieve the required structure. The SA 
algorithm optimises by systematically decreasing the temperature and minimising the 
search region.  

Estimating the parameters using the SA algorithm requires selecting values of control 
parameters, such as the temperature parameter and the initial set of the modelling parameters 
that meet the study purpose. Since this study focuses on estimating the GGD parameters 
to maximise the likelihood function, choosing a high enough temperature parameter 
is necessary. The likelihood function should be multiplied by (-1) to be appropriately 
maximised. Such persuading can be done using MATLAB programming. The SA algorithm 
adopted in this paper was explained in-depth in Abubakar and Sabri (2021a) and Idris and 
Muhammad (2022) and summed up here as follows:

(i) Start the function folder with a big enough sample of data X and the problem 
function f = (Y,X) where Y is the maximum likelihood function.

(ii) Select controlling parameters for the SA, for example, S0, S1, S2, S3 such that 
while S1 > S0, S1 = S2 × S1 

(iii) Generate random values a, b, and c within the initial lower and upper bounds.
(iv) Compute the likelihood function (L) at a, b, and c using Equation 8
(v) Generate neighbour values a1, b1, and c1 within the initial lower and upper bounds.
(vi) Compute the likelihood function L1 at a1, b1, and c1.
(vii) If L1 > L then L1 = L and a = a1, b = b1, and c = c1.
(viii) Else generate a random value 𝑚𝑚 ∈ (0,1). 

(ix) -𝑡𝑡𝑓𝑓𝑒𝑒−
(𝐿𝐿1−𝐿𝐿)
𝑆𝑆1 > 𝑚𝑚   thena = a1, b = b1, and c = c1.

(x) Print a, b, and c, which are α, θ, and γ.

Data Collection and Experiment

The data in this study was extracted from property companies based on the Malaysian 
market from 2010 to 2019. The company’s financial data and stock prices were collected 
from trusted resources, such as the Bursa Malaysia website (www.bursama-laysia.com) 
and The Wall Street Journal website (www.wsj.com). The data analysis involved Excel 
modelling, starting from listed companies’ historical stock prices, the dividends declared 
yearly, and their share issuance for calculating the MIRR in annuity form for each year 
of the ten years using Equation 2. After that, the collected MIRR data was transformed 
into a non-negative form according to Equation 4. Since the study supports a long-term 
investment method, the investor is expected to hold on to a share for a minimum of one 
year to a maximum of ten years. Each data sample with different sizes was obtained (620, 
558, 496, 434, 372, 310, 248, 186). 

This study aims at modelling the MIRR data distribution on the assumption of GGD. 
There is a need for a good estimator to estimate the distribution parameters (α, θ, γ). In this 
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experiment, the two parameters α and θ of the distribution are estimated using the SA and 
MM, considering the fixed values (-0.0001, 0.0001) of the third parameter γ to get an initial 
impression of the parameters. Based on this information, the SA algorithm explained above 
estimates the three parameters of our model. We can finally determine our SA algorithm’s 
effectiveness by obtaining parameters close enough to the initial parameters to maximise 
the likelihood function and minimise the variance nicely. To measure the closeness of the 
estimated parameters to the initial ones, we compute the mean absolute errors (MAE) and 
root mean square errors (RMSE) for each investment period of the estimated parameters 
according to Equations 14 and 15 respectively, 

                  𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑙𝑙
∑ �𝑉𝑉�𝑡𝑡 − 𝑉𝑉�𝑙𝑙
𝑡𝑡=1                     

(1) 

      𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀𝑉𝑉𝑡𝑡 = �∑(𝑉𝑉�𝑡𝑡−𝑉𝑉)2

𝑙𝑙
, 

       (14)
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𝑙𝑙
∑ �𝑉𝑉�𝑡𝑡 − 𝑉𝑉�𝑙𝑙
𝑡𝑡=1                     

(1) 

      𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀𝑉𝑉𝑡𝑡 = �∑(𝑉𝑉�𝑡𝑡−𝑉𝑉)2

𝑙𝑙
,        (15)

where i  =  1, , ,n is the number of observations, V is the observed value and 𝑉𝑉�   is the 
predicted value of the distribution.

RESULTS AND DISCUSSION

The parameters of the GGD are estimated based on the transformed modified internal 
rate of return datasets using a SA in comparison with MM for investment modelling. The 
estimated results are presented in Tables 1 and 2. The results in Tables 1 and 2 are plotted 
in Figures 1 and 2 for further analysis. 

Table 1 shows the initial parameters estimation of the transformed MIRR distributed 
using GGD as in Equation 1, with two unknown parameters α and θ and the fixed growth 
parameter γ = - 0.0001, 0, 0.001 over eight years investment periods of 62 property sector 
stocks in Malaysia from 2010 to 2019, using the method of the moment. From Table 1, 
it is observed that the estimated values α and θ are close to the actual values. Moreover, 
the mean, variance and maximum-likelihood function values are very close to different 
growth rate parameter values for each investment period, thus providing a steady initial 
assumption of the parameters generated. 

Table 2 displays the estimated values for the three parameters GGD using SA. According 
to the trends, it is noticed that the larger the data set (Investment periods), the closer the 
estimated parameters are to the initial parameters. It is further observed that the estimated 
parameters based on SA maximise the maximum-likelihood function and minimise the 
variance in most cases, emphasising the efficiency of using the SA algorithm in estimating 
the parameters for the GGD based on MIRR data from the Malaysian property sector.

Figure 1 depicts the trends of the MAE values of the estimation methods used in this 
study in estimating the parameters of GGD using MIRR data from the property sector in 
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Table 1
Estimated parameters via method of moment

Investment Periods
K 1 2 3 4 5 6 7 8
nK 620 558 496 434 372 310 248 186

m1K 1.12037 1.07290 1.06335 1.05949 1.04194 1.02725 1.01692 1.01046
m2K 1.67559 1.26850 1.19862 1.17247 1.12006 1.07969 1.05239 1.03564

γ = 0

E(XK) 1.1204 1.0729 1.0633 1.0595 1.0419 1.0273 1.0169 1.0105

Var(XK) 0.4204 0.1174 0.0679 0.0499 0.0344 0.0244 0.0183 0.0146

αK 2.9861 9.8058 16.6495 22.4730 31.5448 43.1858 56.5871 69.8467

θK 0.3752 0.1094 0.0639 0.0471 0.0330 0.0238 0.0180 0.0145

l(αK, θK, γK) -416.81 -115.37 3.8792 57.630 108.29 136.876 142.16 125.92
γ = -0.0001

E(XK) 1.1204 1.0727 1.0629 1.0589 1.0411 1.0262 1.0157 1.0090

Var(XK) 0.4204 0.1173 0.0679 0.0499 0.0344 0.0244 0.0182 0.0146

αK 2.9861 9.8058 16.6495 22.4730 31.5448 43.1858 56.5871 69.8467

θK  0.3752 0.1094 0.0639 0.0471 0.0330 0.0238 0.0180 0.0145

l(αK, θK, γK) -416.81 -115.37 3.8785 57.629 108.28 136.870 142.15 125.90
γ = 0.0001

E(XK) 1.1204 1.0731 1.0638 1.0638 1.0428 1.0283 1.0181 1.0119

Var(XK) 0.4204 0.1174 0.0680 0.0680 0.0345 0.0245 0.0183 0.0147

αK 2.9861 9.8058 16.649 22.473 31.544 43.1858 56.587 69.846

θK 0.3752 0.1094 0.0639 0.0472 0.0330 0.0238 0.0180 0.0145

l(αK, θK, γK) -416.81 -115.37 3.8785 57.629 108.28 136.870 142.15 125.90

Note. nK = n (T - K + 1) ; n = 62 and T = 8. Furthermore, l(αK, θK, γK) indicate log-likelihood

Table 2 
Estimated parameters via simulated annealing

Investment Periods
K 1 2 3 4 5 6 7 8
nK 620 558 496 434 372 310 248 186

αK 2.9299 9.6941 17.3998 22.5085 32.4969 43.6111 57.2080 70.2149

θK 0.3709 0.1071 0.0610 0.0473 0.0321 0.0235 0.0177 0.0143

γK -0.000098 -0.000085 -0.000098 -0.00009 -0.00009 -0.00009 -0.00009 -0.00009

E(XK) 1.0866 1.0384 1.0619 1.0652 1.0432 1.0244 1.0128 1.0045

Var(XK) 
0.4030 0.1112 0.0648 0.0504 0.0335 0.0241 0.0179 0.0144

l(αK, θK, γK)-
421.107

-119.065 5.0878 57.5151 108.3712 136.807 142.003 125.672
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Malaysia. The estimated parameters in both SA and MM approaches are close to the initial 
parameters as the values of their MAE approaches are zero. The SA approach’s performance 
improved with the investment period increase.   

In Figure 2, the performance of SA and MM is displayed in terms of their RMSE 
accumulations throughout the investment periods. According to the trends, it can be 
observed that both the SA and MM have lower RMSE accumulation which is close to 
zero. The two methods’ understudy exhibits similar trends as the initial investment period 
but disagrees as the investment period grows. The SA algorithm utilised to estimate the 
GGD parameters provides efficient results by displaying lower error accumulation even 
with a larger sample size. Moreover, the longer the investment period, the lower the RMSE 
because holding on to a stock for a longer period minimises the variance and hence the risk 
recommended in stock investment. The SA employs an optimisation strategy similar to 
how metallurgy and glass are produced. SA varies from most other iterative improvement 

Figure 2. Comparing the RMSEVi of the estimation methods

Figure 1. Comparing MAE of the estimation methods
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algorithms in that, depending on a pseudo-temperature variable, candidate solutions of 
poorer quality than present can be allowed during the algorithm’s iterations. However, 
SA’s performance is better than MM’s, especially when the sample size is large (long-term 
investment period). It indicates that SA can be used for parameter estimation when a large 
sample is used. The process is relatively easy and fast compared to traditional estimation 
methods.

CONCLUSION

This study’s results demonstrate the SA’s capability to estimate the parameters of the 
GGD using the transformed MIRR data. It reveals how the SA parameters are close to 
the initial ones and can be utilised to maximise the likelihood function and minimise the 
variance. Moreover, comparing the values of the SA estimated parameters with the initial 
parameters validates our long-term investment strategy. Such an algorithm performs 
better with the initial assumptions about the parameters. We used the MM to estimate 
our model’s shape and scale parameters while keeping the growth rate parameter values 
fixed. It provided us with suitable initial parameters to use with SA. The results reveal 
the efficacy of the SA algorithm in parameter estimation problems. Hence, the algorithm 
can be applied to multiple generalised distributions belonging to the same family, thereby 
assisting in resolving modelling difficulties associated with real-world data. In addition, 
the performance of SA can be improved by hybridising with other estimation methods, 
such as the Election algorithm, variable neighbourhood search, and differential evolution 
algorithm, to achieve more robust and more efficient implementations. 
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